GLIPR1 is a p53 target gene known to be downregulated in prostate cancer, and increased endogenous GLIPR1 expression has been associated with increased production of reactive oxygen species, increased apoptosis, decreased c-Myc protein levels, and increased cell cycle arrest. Recently, we found that upregulation of GLIPR1 in prostate cancer cells increases mitotic catastrophe through interaction with Hsc70 and downregulation of Aurora kinase A and TPX2. In the current study, we evaluated the mechanisms of recombinant GLIPR1 protein (GLIPR1-ΔTM) uptake by prostate cancer cells and the efficacy of systemic GLIPR1-ΔTM administration in a prostate cancer xenograft mouse model. GLIPR1-ΔTM was selectively internalized by prostate cancer cells, leading to increased apoptosis through reactive oxygen species production and to decreased c-Myc protein levels. Interestingly, GLIPR1-ΔTM was internalized through clathrin-mediated endocytosis in association with Hsc70. Systemic administration of GLIPR1-ΔTM significantly inhibited VCaP xenograft growth. GLIPR1-ΔTM left no evidence of toxicity after it was completely removed from the mouse models 8 hours after injection. Our results demonstrate that GLIPR1-ΔTM is selectively endocytosed by prostate cancer cells, leading to increased reactive oxygen species production and apoptosis, and that systemic GLIPR1-ΔTM significantly inhibits growth of VCaP xenografts without substantial toxicity.