The aim of this work was to test for cure and immunity in a micrometastatic tumor model using in vivo T cell activation with staphylococcal enterotoxin B (SEB) and retargeting with antitumor x anti-CD3 F(ab')2 bispecific antibodies (bsAb). All studies were performed in C3H/HeN mice using syngeneic tumor cell lines. For survival studies, mice were injected intravenously on day 0 with CL62 (a p97-transfected clone of the K1735 murine melanoma tumor). Day-3 treatments included saline (control), SEB (50 gamma g intraperitoneal) with or without bsAb (5 micrograms i.v.). Cured mice, surviving beyond 60 days, were rechallenged with subcutaneous CL62, K1735, or a nonmelanoma control, AG104. SEB activation studies were performed with pulmonary tumor-infiltrating lymphocytes isolated from 10-day established CL62 tumors. Maximal tumor-infiltrating lymphocyte cytotoxicity was demonstrated 24 h following SEB injection, therefore bsAb treatments were administered 24 h after SEB. When survival was examined at 60 days, there were significantly more survivors in the group receiving SEB plus bsAb (70%) compared to the group receiving SEB alone (30%), and the controls (0%) (P = 0.02 and P < 0.01, respectively). Mice cured of CL62 using SEB alone or with bsAb demonstrated equal immunity to CL62, however, mice treated with SEB plus bsAb were more often immune to the p97-parental cell line, K1735(P = 0.001). Ag104 consistently grew in all mice. Results of these studies demonstrate that SEB plus bsAb can be effective, not only in curing tumors but also in providing protective immunity against targeted and non-targeted tumor antigens.