Background: Neuroendocrine tumors (NETs) represent a diverse group of neoplasms that arise from neuroendocrine cells, with Ki-67 immunostaining serving as a crucial biomarker for assessing tumor proliferation and prognosis. Accurate and reliable quantification of Ki-67 labeling index is essential for effective clinical management. Methods: We aimed to evaluate the performance of open-source/open-access deep learning cloud-native platform, DeepLIIF (https://deepliif.org), for the quantification of Ki-67 expression in gastrointestinal neuroendocrine tumors and compare it with the manual quantification method. Results: Our results demonstrate that the DeepLIIF quantification of Ki-67 in NETs achieves a high degree of accuracy with an intraclass correlation coefficient (ICC) = 0.885 with 95% CI (0.848-0.916) which indicates good reliability when compared to manual assessments by experienced pathologists. DeepLIIF exhibits excellent intra-and inter-observer agreement and ensures consistency in Ki-67 scoring. Additionally, DeepLIIF significantly reduces analysis time, making it a valuable tool for high-throughput clinical settings.
Conclusion:This study showcases the potential of open-source/open-access user-friendly deep learning platforms, such as DeepLIIF, for the quantification of Ki-67 in neuroendocrine tumors. The analytical validation presented here establishes the reliability and robustness of this innovative method, paving the way for its integration into routine clinical practice. Accurate and efficient Ki-67 assessment is paramount for risk stratification and treatment decisions in NETs and AI offers a promising solution for enhancing diagnostic accuracy and patient care in the field of neuroendocrine oncology.