Interleukin (IL)-25, a novel Th2 cytokine, is capable of amplifying allergic inflammation. We investigated the modulation of nuclear factor (NF)-kappaB and mitogen-activated protein kinases (MAPK) pathways in IL-25-activated eosinophils, the principal effector cells of allergic inflammation, for the in vitro release of chemokines including monocyte chemoattractant protein-1 (MCP-1), IL-8, and macrophage inflammatory protein (MIP)-1alpha, and inflammatory cytokine IL-6. Gene expression of chemokines and IL-6 was evaluated by RT-PCR, and concentrations of chemokines and cytokine were measured by cytokine protein array, cytometric bead array, and enzyme-linked immunosorbent assay. NF-kappaB, c-Jun amino-terminal kinase (JNK), and p38 MAPK activities in eosinophils were assessed by electrophoretic mobility shift assay and Western blot. IL-25 was found to upregulate the gene expression of chemokines MCP-1, MIP-1alpha, and IL-8, and cytokine IL-6, in eosinophils, and to significantly increase the release of the above chemokines and IL-6 from eosinophils. IL-25 could also activate the JNK, p38 MAPK, and NF-kappaB activities of eosinophils, while inhibitor of IkappaB-alpha phosphorylation (BAY11-7082), JNK (SP600125), and p38 MAPK (SB203580) could suppress the release of IL-8, MIP-1alpha, MCP-1, and IL-6. Together, the above results showed that the induction of MCP-1, MIP-1alpha, IL-8, and IL-6 in IL-25-activated eosinophils are regulated by JNK, p38 MAPK, and NF-kappaB pathways.