2022
DOI: 10.26434/chemrxiv-2022-dsq19
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Tunable In Vivo Co-localisation of Enzymes Within P22 Capsid-Based Nanoreactors

Abstract: The spatial organisation of enzymatic pathways through compartmentalisation is a mechanism used in nature for the regulation of multi-step biocatalytic processes. Virus-like particles (VLPs) derived from Bacteriophage P22 have been explored as biomimetic catalytic compartments. The in vivo co-encapsulation of enzymes is typically achieved via sequential fusion to the scaffold protein (SP), which results in an equimolar ratio of enzyme monomers. However, control over enzyme stoichiometry, which has been shown t… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
4
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
2
2

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(5 citation statements)
references
References 49 publications
0
4
0
1
Order By: Relevance
“…[18] Viren bestehen aus einer Hülle von sich wiederholenden, symmetrischen Anordnungen von viralen Hüllproteinen (VCPs), die Verkapselung von Nukleinsäuren als Nutzlast ermöglichen. Die meisten Viren haben eine ikosaedrische oder helikale Virus-Kapside [18] Proteine und Nukleinsäure, weniger häufig kleine Moleküle Meist Ikosaeder, hohl, 20-120 Nanometer Wirkstofftransport [19] Bildgebung [20] Nanoreaktoren [21] Proteintherapie [22] Ferritin [4b, 23] Meist kleine Moleküle Ikosaeder, hohl, 12 nm…”
Section: Natürliche Protein-nanopartikelunclassified
“…[18] Viren bestehen aus einer Hülle von sich wiederholenden, symmetrischen Anordnungen von viralen Hüllproteinen (VCPs), die Verkapselung von Nukleinsäuren als Nutzlast ermöglichen. Die meisten Viren haben eine ikosaedrische oder helikale Virus-Kapside [18] Proteine und Nukleinsäure, weniger häufig kleine Moleküle Meist Ikosaeder, hohl, 20-120 Nanometer Wirkstofftransport [19] Bildgebung [20] Nanoreaktoren [21] Proteintherapie [22] Ferritin [4b, 23] Meist kleine Moleküle Ikosaeder, hohl, 12 nm…”
Section: Natürliche Protein-nanopartikelunclassified
“…For example, the outer surface of a symmetric protein cage will present many structurally and chemically equivalent motifs (e.g., many equivalent chain termini) for attachment or fusion—12 for symmetry T, 24 for symmetry O, and 60 for symmetry I. That feature is beneficial for some applications (e.g., vaccine‐like particles (Antanasijevic et al, 2020; Brouwer et al, 2021; Marcandalli et al, 2019; Walls et al, 2020), polyvalent binding (Divine et al, 2021; Miller et al, 2023), enzymatic materials (McConnell et al, 2020; McNeale et al, 2023), and imaging scaffolds (Castells‐Graells et al, 2023; Liu et al, 2018; Liu et al, 2019)). However, for other applications it may be desirable to functionalize (or present fusions) on a singular location.…”
Section: Introductionmentioning
confidence: 99%
“…This includes both in vivo applications related to metabolic engineering 2 and bioremediation 3 , in vitro applications as chemoenzymatic production systems 4 , and applications as delivery devices for biomedically relevant enzymes 5 . Encapsulating enzymes inside nanoreactors can result in a number of distinct advantages, including the controllable co-localization of enzymes 6 , the selective enrichment of substrates 7 , intermediate sequestration and channeling 8 , prevention of unwanted side reactions and toxicity 9 , increased enzyme stability and protease resistance [10][11][12][13] , and the ability to sequester and store molecules of interest in a soluble and non-toxic form 14 . Depending on the system, nanoreactors are often assembled in vitro using relatively harsh disassembly, mixing, and reassembly protocols [15][16][17][18] .…”
Section: Introductionmentioning
confidence: 99%