.Advancements in micro/nanofabrication have enabled the realization of practical micro/nanoscale photonic devices such as absorbers, solar cells, metalenses, and metaholograms. Although the performance of these photonic devices has been improved by enhancing the design flexibility of structural materials through advanced fabrication methods, achieving large-area and high-throughput fabrication of tiny structural materials remains a challenge. In this aspect, various technologies have been investigated for realizing the mass production of practical devices consisting of micro/nanostructural materials. This review describes the recent advancements in soft lithography, colloidal self-assembly, and block copolymer self-assembly, which are promising methods suitable for commercialization of photonic applications. In addition, we introduce low-cost and large-scale techniques realizing micro/nano devices with specific examples such as display technology and sensors. The inferences presented in this review are expected to function as a guide for promising methods of accelerating the mass production of various sub-wavelength-scale photonic devices.