In this Letter, we report thermo-optic tunable and efficient second-harmonic generation (SHG) based on an X-cut periodically poled lithium niobate (PPLN) waveguide. By applying an on-chip heater with thermo-isolation trenches and combining a type-0 quasi-phase matching mechanism, we experimentally achieve a high on-chip SHG conversion efficiency of 2500–3000% W−1 cm−2 and a large tuning power efficiency of 94 pm/mW inside a single 5-mm-long straight PPLN waveguide. Our design is for energy-efficient, high-performance nonlinear applications, such as wavelength conversion, highly tunable coherent light sources, and photon-pair generation.