A path-independent measure in order parameter space is introduced such that, when integrated along any closed contour in a three-dimensional nematic phase, it yields the topological charge of any line defects encircled by the contour. A related measure, when integrated over either closed or open surfaces, reduces to known results for the charge associated with point defects (hedgehogs) or Skyrmions. We further define a tensor density, the disclination density tensor
D
, from which the location of a disclination line can be determined. This tensor density has a dyadic decomposition near the line into its tangent and its rotation vector, allowing a convenient determination of both. The tensor
D
may be non-zero in special configurations in which there are no defects (double-splay or double-twist configurations), and its behaviour there is provided. The special cases of Skyrmions and hedgehog defects are also examined, including the computation of their topological charge from
D
.