Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Miniaturized computational spectrometers have emerged as a promising strategy for miniaturized spectrometers, which breaks the compromise between footprint and performance in traditional miniaturized spectrometers by introducing computational resources. They have attracted widespread attention and a variety of materials, optical structures, and photodetectors are adopted to fabricate computational spectrometers with the cooperation of reconstruction algorithms. Here, a comprehensive review of miniaturized computational spectrometers, focusing on two crucial components: spectral encoding and reconstruction algorithms are provided. Principles, features, and recent progress of spectral encoding strategies are summarized in detail, including space‐modulated, time‐modulated, and light‐source spectral encoding. The reconstruction algorithms are classified into traditional and deep learning algorithms, and they are carefully analyzed based on the mathematical models required for spectral reconstruction. Drawing from the analysis of the two components, cooperations between them are considered, figures of merits for miniaturized computational spectrometers are highlighted, optimization strategies for improving their performance are outlined, and considerations in operating these systems are provided. The application of miniaturized computational spectrometers to achieve hyperspectral imaging is also discussed. Finally, the insights into the potential future applications and developments of computational spectrometers are provided.
Miniaturized computational spectrometers have emerged as a promising strategy for miniaturized spectrometers, which breaks the compromise between footprint and performance in traditional miniaturized spectrometers by introducing computational resources. They have attracted widespread attention and a variety of materials, optical structures, and photodetectors are adopted to fabricate computational spectrometers with the cooperation of reconstruction algorithms. Here, a comprehensive review of miniaturized computational spectrometers, focusing on two crucial components: spectral encoding and reconstruction algorithms are provided. Principles, features, and recent progress of spectral encoding strategies are summarized in detail, including space‐modulated, time‐modulated, and light‐source spectral encoding. The reconstruction algorithms are classified into traditional and deep learning algorithms, and they are carefully analyzed based on the mathematical models required for spectral reconstruction. Drawing from the analysis of the two components, cooperations between them are considered, figures of merits for miniaturized computational spectrometers are highlighted, optimization strategies for improving their performance are outlined, and considerations in operating these systems are provided. The application of miniaturized computational spectrometers to achieve hyperspectral imaging is also discussed. Finally, the insights into the potential future applications and developments of computational spectrometers are provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.