Recent advances in growth techniques have enabled the synthesis of high-quality large area films of 2D materials beyond graphene. As a result, nanofabrication methods must be developed for high-resolution and precise processing of these atomically thin materials. These developments are critical both for the integration of 2D materials in complex, integrated circuitry, as well as the creation of sub-wavelength and quantum-confined nanostructures and devices which allow the study of novel physical phenomena. In this review, we summarize recent advances in post-synthesis nanopatterning and nanofabrication techniques of 2D materials which include (1) etching techniques, (2) atomic modification, and (3) emerging nanopatterning techniques. We detail novel phenomena and devices which have been enabled by the recent advancement in nanofabrication techniques and comment on future outlook of 2D materials beyond graphene.