Abstract:A series of Pd-Ni bimetallic catalysts supported on SBA-15 (0.2%Pd-x%Ni/SBA-15, x = 0.4, 0.7, and 1.2) were prepared through the impregnation method combined with the NaBH 4 reduction method. X-ray diffraction (XRD), N 2 adsorption-desorption, X-ray photoemission spectroscopy (XPS) and transmission electron microscope (TEM) were used to characterize the prepared catalysts. All the synthesized catalysts were evaluated for the liquid-phase hydrogenation of cinnamaldehyde (CAL). The addition of Ni obviously enhanced the CAL conversion and selectivity of C=C hydrogenation to hydrocinnamaldehyde (HALD) over the 0.2%Pd-x%Ni/SBA-15 catalysts. Meanwhile, 0.2%Pd-1.2%Ni/SBA-15 showed the best performance with 96.3% conversion and 87.8% selectivity toward HALD. This improvement was attributed to the synergistic effect between the Pd and Ni nanoparticles, enhancing the dispersion of Pd metal particles and increasing the content of surface Pd 0 species. In addition, the influences of a few reaction factors including H 2 pressure, reaction temperature, and reaction time were studied over 0.2%Pd-1.2%Ni/SBA-15.