Colloidal semiconductor nanocrystals, known as quantum dots (QDs), are regarded as brightly photoluminescent nanomaterials possessing outstanding photophysical properties, such as high photodurability and tunable absorption and emission wavelengths. Therefore, QDs have great potential for a wide range of applications, such as in photoluminescent materials, biosensors and photovoltaic devices. Since the development of synthetic methods for accessing high‐quality QDs with uniform morphology and size, various types of QDs have been designed and synthesized, and their photophysical properties dispersed in solutions and at the single QD level have been reported in detail. In contrast to dispersed QDs, the photophysical properties of assembled QDs have not been revealed, although the structures of the self‐assemblies are closely related to the device performance of the solid‐state QDs. Therefore, creating and controlling the self‐assembly of QDs into well‐defined nanostructures is crucial but remains challenging. In this Minireview, we discuss the notable examples of assembled QDs such as dimers, trimers and extended QD assemblies achieved using organic templates. This Minireview should facilitate future advancements in materials science related to the assembled QDs.