Electrochemical and photochemical bond-activation steps are important for a variety of chemical transformations. We present here four new complexes, [Ru(L(n) )(dmso)(Cl)]PF6 (1-4), where L(n) is a tripodal amine ligand with 4-n pyridylmethyl arms and n-1 triazolylmethyl arms. Structural comparisons show that the triazoles bind closer to the Ru center than the pyridines. For L(2) , two isomers (with respect to the position of the triazole arm, equatorial or axial), trans-2sym and trans-2un , could be separated and compared. The increase in the number of the triazole arms in the ligand has almost no effect on the Ru(II) /Ru(III) oxidation potentials, but it increases the stability of the RuSdmso bond. Hence, the oxidation waves become more reversible from trans-1 to trans-4, and whereas the dmso ligand readily dissociates from trans-1 upon heating or irradiation with UV light, the RuS bond of trans-4 remains perfectly stable under the same conditions. The strength of the RuS bond is not only influenced by the number of triazole arms but also by their position, as evidenced by the difference in redox behavior and reactivity of the two isomers, trans-2sym and trans-2un . A mechanistic picture for the electrochemical, thermal, and photochemical bond activation is discussed with data from NMR spectroscopy, cyclic voltammetry, and spectroelectrochemistry.