The advent of memristors and resistive switching has transformed solid-state physics, enabling advanced applications such as neuromorphic computing. Inspired by these developments, we introduce the concept of Mem-emitters, devices that manipulate light-emission properties of semiconductors to achieve memory functionalities. Mem-emitters, influenced by past exposure to stimuli, offer a new approach to optoelectronic computing with potential for enhanced speed, efficiency, and integration. This study explores the unique properties of transition-metal dichalcogenidebased heterostructures as a promising platform for Mem-emitter functionalities because of their atomic-scale thickness, tunable electronic properties, and strong light−matter interaction. When distinguishing between population-driven and transition rate-driven Mem-emitters, we highlight their potential for various applications, including optoelectronic switches, variable light sources, and advanced communication systems. Understanding these mechanisms paves the way for innovative technologies in memory and computation, providing insights into the intrinsic dynamics of complex systems.