The
need for biocompatible polymers capable of dissolving in the
skin while exhibiting reasonable mechanical features and delivery
efficiency limits the range of materials that could be utilized in
fabricating dissolving microneedle array patches (MAPs). The incorporation
of additives, such as surfactants, during microneedle fabrication
might be an alternative solution to overcome the limited range of
materials used in fabricating dissolving MAPs. However, there is a
lacuna in the knowledge on the effect of surfactants on the manufacture
and performance of dissolving MAPs. The current study explores the
role of surfactants in the manufacture and performance of dissolving
MAPs fabricated from poly(vinyl alcohol) (PVA) and poly(vinyl pyrrolidone)
(PVP) loaded with the model drugs, ibuprofen sodium and itraconazole.
Three nonionic surfactants, Lutrol F108, Pluronic F88, and Tween 80,
in solutions at varying concentrations (0.5, 1.0, and 2.0% w/w) were
loaded into these dissolving MAPs. It was discovered that all of the
dissolving MAPs that incorporated surfactant displayed a lower reduction
in the microneedle height (≈10%) relative to the control formulation
(≈20%) when subjected to a compressive force of 32 N. In addition,
the incorporation of surfactants in some instances enhanced the insertion
profile of these polymeric MAPs when evaluated using
ex vivo
neonatal porcine skin. The incorporation of surfactant into ibuprofen
sodium-loaded dissolving MAPs improved the insertion depth of MAPs
from 400 μm down to 600 μm. However, such enhancement
was not apparent when the MAPs were loaded with the model hydrophobic
drug, itraconazole. Skin deposition studies highlighted that the incorporation
of surfactant enhanced the delivery efficiency of both model drugs,
ibuprofen sodium and itraconazole. The incorporation of surfactant
enhanced the amount of ibuprofen sodium delivered from 60.61% up to
≈75% with a majority of the drug being delivered across the
skin and into the receptor compartment. On the other hand, when surfactants
were added into MAPs loaded with the model hydrophobic drug itraconazole,
we observed enhancement in intradermal delivery efficiency from 20%
up to 30%, although this did not improve the delivery of the drug
across the skin. This work highlights that the addition of nonionic
surfactant is an alternative formulation strategy worth exploring
to improve the performance and delivery efficiency of dissolving MAPs.