We consider an automatic construction of locally optimal preconditioners for positive definite linear systems. To achieve this goal, we introduce a differentiable loss function that does not explicitly include the estimation of minimal eigenvalue. Nevertheless, the resulting optimization problem is equivalent to a direct minimization of the condition number. To demonstrate our approach, we construct a parametric family of modified BPX preconditioners. Namely, we define a set of empirical basis functions for coarse finite element spaces and tune them to achieve better condition number. For considered model equations (that includes Poisson, Helmholtz, Convection-diffusion, Biharmonic, and others), we achieve from two to twenty times smaller condition numbers for symmetric positive definite linear systems.