Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Traditional seismic wave-based tunnel advanced geological forecasting techniques are primarily designed for drill and blast method construction tunnels. However, given the fast excavation speed and limited prediction space in tunnel boring machine (TBM) construction tunnels, traditional methods have significant technical limitations. This study analyzes the characteristics of different types of TBM construction tunnels and, considering the practical construction conditions, identifies an effective observation system and data acquisition method. To address the challenges in advanced forecasting for TBM construction tunnels, a method of ellipsoid positioning velocity analysis, which takes into account the constraints of three-component data directions, is proposed. Based on the characteristics of the advanced forecasting observation system, this method compares the maximum values on the spatial isochronous ellipsoidal surface to determine the average velocity of the geological layer rays, thereby enabling accurate inversion of the spatial distribution ahead. Utilizing numerical simulation, a model for the advanced detection of typical unfavorable geological formations is established by obtaining the wave field response characteristics of seismic waves in three-dimensional space, and the velocity structure of the model is retrieved through this velocity analysis method. In the engineering example, the fracture property, water content, and weathering degree of the surrounding rock are predicted accurately.
Traditional seismic wave-based tunnel advanced geological forecasting techniques are primarily designed for drill and blast method construction tunnels. However, given the fast excavation speed and limited prediction space in tunnel boring machine (TBM) construction tunnels, traditional methods have significant technical limitations. This study analyzes the characteristics of different types of TBM construction tunnels and, considering the practical construction conditions, identifies an effective observation system and data acquisition method. To address the challenges in advanced forecasting for TBM construction tunnels, a method of ellipsoid positioning velocity analysis, which takes into account the constraints of three-component data directions, is proposed. Based on the characteristics of the advanced forecasting observation system, this method compares the maximum values on the spatial isochronous ellipsoidal surface to determine the average velocity of the geological layer rays, thereby enabling accurate inversion of the spatial distribution ahead. Utilizing numerical simulation, a model for the advanced detection of typical unfavorable geological formations is established by obtaining the wave field response characteristics of seismic waves in three-dimensional space, and the velocity structure of the model is retrieved through this velocity analysis method. In the engineering example, the fracture property, water content, and weathering degree of the surrounding rock are predicted accurately.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.