It is difficult to determine whether the measured rate constant for reaction of atomic hydrogen with formic acid reported in Part 1 reflects the H atom quantum diffusion rate or the rate constant for the tunneling reaction step. In Part 2 of this series, we present kinetic studies of the postphotolysis H atom reactions with deuterated formic acid (DCOOD) to address this ambiguity. Short duration 193 nm in situ photolysis of DCOOD trapped in solid parahydrogen results in partial depletion of the DCOOD precursor and photoproduction of primarily CO, CO2, DOCO, HCO and mobile H atoms. At 1.9 K we observe post-irradiation growth in the concentrations of DOCO and HCO that can be explained by H atom tunneling reactions with DCOOD and CO, respectively. Conducting experiments with different deuterium isotopomers of formic acid (DCOOD, DCOOH, HCOOD and HCOOH) provides strong circumstantial evidence the reaction involves H atom abstraction from the alkyl group of formic acid. Further, the anomalous temperature dependence measured for the H + HCOOH reaction in Part 1 is also observed for the analogous reactions with deuterated formic acid. The rate constants extracted for H atom reactions with DCOOD and HCOOH are equivalent to within experimental uncertainty. This lack of a kinetic isotope effect in the measured rate constant is interpreted as evidence the reactions are diffusion limited; the measured rate constant reflects the H atom diffusion rate and not the tunneling reaction rate. Whether or not H atom reactions with chemical species in solid parahydrogen are diffusion limited is one of the outstanding questions in this field, and this work makes significant strides toward showing the reaction kinetics with formic acid are diffusion limited.