Silicon carbide (SiC) power devices significantly outperform the well-established silicon (Si) devices in terms of high breakdown voltage, low power loss, and fast switching. This review briefly introduces the major features of SiC power devices and then presents research works on breakdown phenomena in SiC pn junctions and related discussion which takes into account the energy band structure. Next, recent progress in SiC metal-oxide-semiconductor field effect transistors, which are the most important unipolar devices, is described with an emphasis on the improvement of channel mobility at the SiO
2
/SiC interface. The development of SiC bipolar devices such as pin diodes and insulated gate bipolar transistors, which are promising for ultrahigh-voltage (>10 kV) applications, are introduced and the effect of carrier lifetime enhancement is demonstrated. The current status of mass production and how SiC power devices can contribute to energy saving are also described.