An analogy between Wigner resonant tunneling and tunneling across a static potential barrier in a static magnetic field is found. Whereas in the process of Wigner tunneling an electron encounters a classically allowed region, where a discrete energy level coincides with its energy, in the magnetic field a potential barrier is a constant in the direction of tunneling. Along the tunneling path the certain regions are formed, where, in the classical language, the kinetic energy of the motion perpendicular to tunneling is negative. These regions play a role of potential wells, where a discrete energy level can coincide with the electron energy. Such phenomenon, which occurs at the certain magnetic field, is called Euclidean resonance and substantially depends on a shape of potential forces in the direction perpendicular to tunneling. Under conditions of Euclidean resonance a long distance underbarrier motion is possible.