“…Then the function x → −∆ h (α, β; x) is multiplicatively convex on (0, R h ), while the function y → −∆ h (α, β; 1/y) is completely monotonic (and therefore log-convex ) on (1/R h , ∞). Corollary 4.2 Suppose {h n } n≥0 is a doubly positive sequence and h(a; x) is defined in (17). Then for all µ, β > 0, α ∈ N and 0 ≤ x < R h the following estimates hold: Γ q (µ + α)Γ q (µ + β) Γ q (µ)Γ q (µ + α + β) < h(q µ+α ; x)h(q µ+β ; x) h(q µ ; x)h(q µ+α+β ; x) ≤ 1 and Γ q (µ + α)Γ q (µ + β) Γ q (µ)Γ q (µ + α + β) − 1 h(q µ ; x)h(q µ+α+β ; x) < ∆ h (α, β; x)…”