To increase liquid rocket engines (LREs) lifetime capability and allow for reusability applications, the efficient evaluation of the most critical subcomponents' remaining useful life plays a vital role. Regeneratively cooled combustion chamber (CC) wall must withstand extremely high loads emerging from a massive temperature gradient between the hot gas and the low temperature of the coolant. The combined loading and unloading operations, together with high temperature and rate dependent inelastic strain, significantly lessen the combustion chamber inner liner life. Within the presented research, the post-processing model was developed for low cycle fatigue (LCF) evaluation of the reusable LRE's combustion chamber walls. The proposed damage accumulation model is based on the amalgamation of Bonora-Gentile-Pirondi ( 2004) and Dufailly-Lemaitre (1995) methods, and it incorporates ductile and brittle damage components which are embedded in the post-processing method. Moreover, the required numerical calculation time is further decreased on account of the proposed routine which allows for analysis of only two initial numerically acquired FE cycles. The obtained results based on the developed method combined with coupled thermal-structural quasi 2D Finite Element Analysis (FEA) of the nozzle throat cross-section, were confirmed to be in good agreement with the validation data acquired from the M51 thermo-mechanical laboratory site at DLR Lampoldshausen. The proposed model can be successfully applied for a quick evaluation of the remaining useful life of the CC wall for various rocket engine architectures.