Modern gas turbines have evolved by increasing the turbine inlet temperature (TIT) to improve performance. This development has led to a demand for cooling techniques. Among these, the film cooling, which involves injecting compressed air through holes on the turbine surface, is a prominent cooling technique used to protect the turbine surface. In this study, a comparative analysis is conducted between the conventional fan-shaped film cooling hole, primarily used in film cooling techniques, and modified shapes achieved by altering the geometry of the film cooling hole based on a fan-shaped hole to assess and compare the cooling performance on a flat plate surface. The adiabatic film cooling effectiveness was measured for three film cooling holes, the Baseline of a 7-7-7 fan-shaped film cooling hole, namely, Staircase, which had a double-step at the hole exit, and Compound Expansion, which had an additional expanded flow path at the hole leading edge. The used measurement technique was the pressure-sensitive paint (PSP) technique, using nitrogen gas as the foreign gas, and experiments were conducted at a density ratio of 1.0 and blowing ratios ranging from 0.5 to 2.0. The results reveal that the modified holes featured wider lateral expansion at the hole exits, resulting in a broader distribution of the cooling effectiveness in the lateral direction compared to the Baseline. The Staircase shows a better performance, although an overall cooling effectiveness trend similar to that of the Baseline. Furthermore, the Compound Expansion demonstrates an enhancement in the cooling performance with an increased blowing ratio, notably achieving nearly double the cooling effectiveness compared to that of the Baseline at a blowing ratio of 2.0.