In this article, we investigate efficient minimum mean square error (MMSE) frequency domain equalization (FDE)-based iterative (turbo) packet combining for cyclic prefix (CP)-CDMA MIMO with Chase-type ARQ. We introduce two turbo packet combining schemes: (i) In the first scheme, namely "chip-level turbo packet combining", chiplevel MMSE-FDE and packet combining are jointly performed at the chip-level. (ii) In the second scheme, namely "symbol-level turbo packet combining", chip-level MMSE-FDE and despreading are separately carried out for each transmission, then packet combining is performed at the level of the soft demapper. The key idea of the proposed schemes is to exploit the diversity among all transmissions with a very low cost by introducing new variables recursively computed. The complexity and performances are evaluated for some representative antenna configurations and load factors (i.e., number of orthogonal codes with respect to the spreading factor) to show the gains offered by the proposed techniques.