In recent years, there has been great interest in developing cooling systems with humidity- and temperature-independent control capabilities that can operate efficiently at varying temperatures. This paper proposes a bi-loop double-evaporator ejection–compression cycle, which utilizes low-grade heat and is suitable for the construction industry. The proposed cycle involves the concurrent operation of a vapor compression cycle and an ejector refrigeration cycle that enables it to handle altered pressure levels and operate with varying compression ratios all the way to a common condenser pressure. Conventional computational fluid dynamics (CFD) approaches often model steam as an ideal gas with single-phase flow. In contrast, this research employs the wet steam model to optimize ejector geometry. The wet steam model takes into account non-equilibrium water vapor condensation, thus providing a more precise assessment of spontaneous condensation behavior and its impact on ejector performance. When compared to the conventional dry gas model, the use of the wet steam model dramatically decreases the entrainment ratio error from 16.24% for single-phase steam to 3.92% when compared to experimental data. This study concentrates on four critical attributes of wet steam, including Mach number, droplet nucleation rate, average droplet radius, and liquid mass fraction, to develop a strategy for enhancing ejector performance and efficiency. The study demonstrates that optimal area and primary nozzle diameter ratios for the steam ejector are 5 and 2.4, respectively. Increasing the area ratio mitigates condensation intensity, thereby reducing the liquid mass fraction in the diffuser. Overall, this paper provides valuable insights into improving and optimizing ejector performance, thus highlighting the importance of considering the behavior of spontaneous condensation in ejector design and modeling.