We conducted experiments in a laboratory to study turbulent flow over wind generated water waves. The experiments were performed in a wind-wave-current flume with three free stream wind speeds of Uref = 6.0, 8.0 and 10.0 m s−1, corresponding to 10 m equivalent wind speed of U10 = 10.2, 12.2 and 14.1 m s−1 and the root-mean-square wave height of 0.7, 1.1 and 1.7 cm, respectively, at a fetch of 6.2 m. The instantaneous velocity fields above the waves were obtained by using a particle image velocimetry (PIV) technique. The velocity fields were decomposed into the mean, wave-induced and turbulent velocity components. The tested wind waves were primarily dissipated by capillaries and microscale breaking waves. The Bond number and the shear velocity-fetch based Reynolds number were found to correlate with the wind wave regimes well. The turbulent dissipation rates above the water surface were determined based on resolved spatial gradient of instantaneous velocities, where the time-averaged dissipation rate values were calibrated using those estimated from the one-dimensional velocity spectrum in the temporal space. Subsequently, the turbulent kinetic energy (TKE) budget including its production, dissipation, advection and turbulent transport was presented. In addition, conditional averaging analysis of the TKE budgets over leeward, windward sides and all phases was performed. The results showed a strong dependency with the wave phase in the TKE budget terms except for the dissipation. The production-dissipation ratio increased significantly as the wind speed increased, likely attributed to the increased roughness over the substantial coverage of micro-breaking waves.