1975
DOI: 10.1016/0301-9322(75)90012-9
|View full text |Cite
|
Sign up to set email alerts
|

Turbulence structure of air-water bubbly flow—II. local properties

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

19
100
1
3

Year Published

1999
1999
2021
2021

Publication Types

Select...
5
3
1

Relationship

0
9

Authors

Journals

citations
Cited by 299 publications
(123 citation statements)
references
References 5 publications
19
100
1
3
Order By: Relevance
“…Serizawa et al [21], Michiyoshi and Serizawa [22], Revankar and Ishii [18], Liu and Bankoff [23] and Hibiki et al [24] reported that in contrast to the downward flow void fraction distribution, two-phase upward flow is expected to result in a peak void fraction close to the wall. Kashinsky and Randin [5] attributed this to the transverse lift force, as originally defined by Žun [20], acting on the bubble in an 01030-p. 5 upward flow (with an opposite sign to that for a downward flow), thus leading to wall peaked void fraction distribution profiles across the pipe section.…”
Section: Resultsmentioning
confidence: 99%
“…Serizawa et al [21], Michiyoshi and Serizawa [22], Revankar and Ishii [18], Liu and Bankoff [23] and Hibiki et al [24] reported that in contrast to the downward flow void fraction distribution, two-phase upward flow is expected to result in a peak void fraction close to the wall. Kashinsky and Randin [5] attributed this to the transverse lift force, as originally defined by Žun [20], acting on the bubble in an 01030-p. 5 upward flow (with an opposite sign to that for a downward flow), thus leading to wall peaked void fraction distribution profiles across the pipe section.…”
Section: Resultsmentioning
confidence: 99%
“…気泡流には様々なスケールがあり、気泡が生成 する乱れは多くの研究者の注目を集めている。そ の乱れは、流れ場と相互作用し、単相流とは異な る複雑な流動構造を示す [1][2][3][4][5][6]。特に気泡クラスタ ーは、乱流の秩序渦構造よりも大きく、大規模な 流動構造そのものを変化させる [7,8]。 そのため気 泡クラスター形成の有無について様々な報告が 行われている [9][10][11]。 気泡のクラスター形成は、まず理論的に予測さ れた。ポテンシャル流れを仮定し、複数の気泡が 上昇する際、気泡間相互作用によって水平面に気 泡 が クラスターを 形成することが報告された [12,13]。一方で、実際の気泡流では、気泡同士の 合体によって気泡径差が生まれ、通常気泡のクラ スター構造は観察されない。さらに前述のポテン シャル流れを用いた理論でも、気泡径差を考慮す るとクラスターは形成されない [14]。しかし、実 験的研究において、界面活性剤や電解質を混入さ せることで気泡クラスターの形成が報告されて いる [15,16]。 界面活性剤や電解質の混入は、気泡表面の境界 条件を大きく変化させる。界面活性剤では気泡の 抗力の増加や合体を防ぎ、電解質ではやクリーン な気泡を保ちながら気泡合体を防ぐ [17][18][19][20] /01 02 0/%/ü ! 1 ö 3 4 5 6 7 8 9 6 % !ú ÷ ù ' ü ü ö !…”
Section: 緒 言unclassified
“…In their pioneering work, Serizawa et al (1975) reported that the void fraction radial profile evolves from a wall-peak to a core-peak trend with an increased gas input (see Figure 5a). However, during these experiments the bubble size increased with gas input because a porous injector was used to generate the bubbles (Koide et al 1968).…”
Section: Void Fraction Radial Profilementioning
confidence: 99%
“…Depending on the flow conditions, the void fraction radial profile can present either a peak near the pipe wall or at the center line (Grossetête 1995, Liu 1993, Serizawa et al 1975, Wang et al 1987. In their pioneering work, Serizawa et al (1975) reported that the void fraction radial profile evolves from a wall-peak to a core-peak trend with an increased gas input (see Figure 5a).…”
Section: Void Fraction Radial Profilementioning
confidence: 99%