A solar air heater is a device that gathers solar radiation and converts it into heat. The core principle involves air moving through a solar collector, where sunlight naturally increases the air temperature within the collector. The benefit of this technology lies in its affordability and simplicity. The implementation of a solar air heater (SAH) test bench holds significant promise in addressing both global change and sustainable development objectives. The primary goal of this study is to examine the aerodynamic configuration of a novel solar air heater test bench accessible at the Laboratory of Electro-Mechanic Systems (LASEM). This study was carried out using the standard k-ω turbulence model with the use of the ANSYS Fluent 17.0 software. The results indicate that the velocity at the inlet directly influences the velocity fields, temperature, static pressure, and characteristics of turbulence. Furthermore, the numerical findings confirmed that the temperature and velocity profiles in the second channel are in good concordance with the experimental findings in the case of a fan, placed alongside the insulation, operating in a delivery mode. Based on these results, the computational approach is validated. When comparingforced convection to natural convection under identical conditions, there was a notable increase in the energy efficiency, with forced convection showing a significant improvement of approximately 31.8%. Indeed, the range of temperatures reached with the proposed design, is highly beneficial for both industrial and household applications.