Radial electric fields in tokamaks can be generated by charge accumulation due to a resonant trapped electron pinch effect. The radial field can then drive a toroidal flow. This resonant pinch effect was evaluated for the current-drive scheme that diffused electrons in the direction parallel to the toroidal field. It was found that, for typical tokamak parameters, to generate a radial electric field on the order of 100 kV=m, an rf power density on the order of kW=m 3 is required. This power, absorbed by trapped electrons, is a small fraction of rf power density for current drive which is absorbed by passing electrons. However, according to the Landau resonant mechanism, the fraction of the momentum to trapped electrons decays exponentially with the square of the parallel phase velocity of the wave; therefore, the power absorbed at lower resonant velocities is the key. On the other hand, the redistribution of the current profile, due to rf current, decreases the local poloidal field and may reduce the particle transport significantly. It can relax the requirement of momentum deposited to trapped electrons, and, at the same time, contribute to explain the strongly correlation between the rotation and the driven current observed in experiments.