Oak is one of the most economically important hardwood tree species in Europe, and its prevalence will increase due to progressing global climate change, according to predictive models. With the increasing demand for timber and with the need for a balance between carbon emissions and sequestration, it is essential to address the afforestation of agricultural land. Therefore, this research aimed to investigate the physico-mechanical properties and anatomical structure of pendulate oak (Quercus robur L.) wood—specifically focusing on the trunk’s cross-section—in post-agricultural areas compared with the forest land in the western part of Poland. Wood density, bending strength, modulus of elasticity, and other parameters were analyzed from 1626 wood samples. The analysis of physico-mechanical properties reveals that, historically, agricultural land use has an almost negligible impact on wood quality. Despite significant differences in small vessel diameter and fiber length favoring trees from post-agricultural land, the physico-mechanical properties remain consistent. Large vessel measurements show comparable diameter and length in both land types. These findings suggest that post-agricultural land can serve as an effective alternative for high-quality pendulate oak wood production for industrial purposes. However, wood from post-agricultural land may exhibit a decrease in modulus of rupture by over 30% and potentially lower density above the trunk’s halfway point. This observation hints at the fact that oak trees in post-agricultural areas could be cultivated in shorter rotation periods compared to forest land.