This work investigates the influence of ground albedo on the solar radiation obtained by surfaces mounted on fixed-tilt-to-south, one-axis, and two-axis systems. To do this, estimation of the solar radiation difference is performed by applying real albedo and zero albedo. This is achieved within Saudi Arabia at 82 selected sites. Annual, seasonal, and monthly mean solar energy differences are computed as a function of the site’s number, latitude, and local near-real ground albedo. The great variation in the ground-albedo values at the 82 sites (0.1–0.46) could be thought of as having a significant effect on the solar radiation levels received on the three tracking modes. This analysis shows quite the opposite; zero-albedo ground diminishes solar radiation levels by 1.43%, 3.50%, and 3.20%, respectively, for the three modes. Therefore, in most solar engineering applications, a ground albedo of 0.2 (considered a reference) can be used without losing accuracy. This is the main conclusion of the study, which must, however, be applied with caution in areas with snow cover, especially for mode-III tracking systems. In such situations, the increase in solar radiation levels may be up to 15% (but ≈3.5% for mode-I and -II systems instead).