2022
DOI: 10.36306/konjes.935621
|View full text |Cite
|
Sign up to set email alerts
|

Türki̇ye’deki̇ Demi̇ryolu Enerji̇ Tüketi̇mi̇ni̇n Yapay Si̇ni̇r Ağlari İle Tahmi̇n Edi̇lmesi̇

Abstract: A number of measures are being taken to protect the rapidly depleted energy resources around the world. The trend towards sustainable energy resources is increasing, especially in order to improve energy efficiency in transportation vehicles. In this study, the total energy consumption amounts of the railway vehicles were examined based on the line length, number of passengers and the amount of cargo in the last 43 years in our country. For 5 different models created by the artificial neural networks method, t… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(3 citation statements)
references
References 21 publications
0
2
0
1
Order By: Relevance
“…Önerilen modellerin tahmin performansını değerlendirmek için literatürde sık kullanılan istatistiki değerlendirme ölçütlerinden Ortalama Hata Kare Kökü (RMSE), Ortalama Mutlak Hata (MAE) ve doğruluk kriterinden olan Belirleme Katsayısı 𝑅 2 kullanılmıştır [31][32][33][34][35]. RMSE, modeldeki tahmin hatalarının standart sapmasını hesaplamaktadır.…”
Section: A Veri Düzenleme Ve Değerlendirme öLçütleriunclassified
“…Önerilen modellerin tahmin performansını değerlendirmek için literatürde sık kullanılan istatistiki değerlendirme ölçütlerinden Ortalama Hata Kare Kökü (RMSE), Ortalama Mutlak Hata (MAE) ve doğruluk kriterinden olan Belirleme Katsayısı 𝑅 2 kullanılmıştır [31][32][33][34][35]. RMSE, modeldeki tahmin hatalarının standart sapmasını hesaplamaktadır.…”
Section: A Veri Düzenleme Ve Değerlendirme öLçütleriunclassified
“…Training the network is the process of finding the optimum values of the weights [20]. In this study, each input is multiplied by the weight value (wij) that connects that input to the processing element and combined through the addition function given in Equation 1 [21]. Levenberg-Marquardt training algorithm was used because it is faster and more reliable than other training algorithms [22].…”
Section: Artificial Neural Networkmentioning
confidence: 99%
“…As of 2020, there was a total of 12,803 km of national railway network in Turkey, of which there were 11,590 km of conventional lines and 1213 km of high-speed lines [ 48 ]. Considering Turkey in general, it is thought that approximately 5440 tons of waste ballast is produced annually.…”
Section: Introductionmentioning
confidence: 99%