Türkiye Hurda Demir Çelik İthalatının Gelecek Değerlerinin Derin Öğrenme, Makine Öğrenmesi ve Topluluk Öğrenme Yöntemleri ile Öngörülmesi
Yunus Emre Gür,
Kamil Abdullah Eşidir
Abstract:Bu çalışma, Türkiye’nin hurda demir çelik ithalatını tahmin etmek için LSTM, MLP, Random Forest, SVM, XGBoost ve Doğrusal Regresyon modellerini kapsamlı bir şekilde değerlendirmektedir. Modellerin performansları RMSE, MSE, MAE, MAPE ve R² metrikleri kullanılarak ölçülmüştür. LSTM modeli, en iyi tahmin performansını göstererek eğitim setinde RMSE 0,0387, MSE 0,0014, MAE 0,0297, MAPE 0,1261 ve R² 0.9631 sonuçlarını elde etmiştir. Gelecek 12 aylık ithalat tahminlerine göre, Nisan 2024’te 773.378.496 USD olan itha… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.