Quantum dot (QD) laser devices can be successfully used in optical communications due to their unique properties caused by the carrier localization in three dimensions. In particular, quantum dot-in-a-well (QDWELL) lasers are characterized by an extremely low threshold current density and the high modulation frequency. However, their operation rate is limited by the strongly nonlinear electron and hole scattering rates in and out of QD. We investigated theoretically the nonlinear optical phenomena in QDWELL lasers and amplifiers under the optical injection. We have shown that the synchronization of the carrier dynamics in QD and quantum well (QW) caused by the optical injection improves the QDWELL laser performance and, in particular, enhances the relaxation oscillation (RO) frequency. As a result, the QDWELL laser performance in the analogous optical link (AOL) is significantly improving. The optical injection also improves the performance of the QDWELL-based semiconductor optical amplifiers (SOA).