2016
DOI: 10.1007/s10649-016-9699-2
|View full text |Cite
|
Sign up to set email alerts
|

Turn vs. shape: teachers cope with incompatible perspectives on angle

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
5
0
2

Year Published

2017
2017
2020
2020

Publication Types

Select...
5
3

Relationship

1
7

Authors

Journals

citations
Cited by 22 publications
(7 citation statements)
references
References 15 publications
0
5
0
2
Order By: Relevance
“…Lakatos's research was deeply involved with the development of definitions (e.g. Kontorovich & Zazkis, 2016;Larsen & Zandieh, 2008;Ouvrier-Buffet, 2006). He described the history of the concepts of polyhedron and of uniform convergence of sequences of functions in terms of the development of definitions, for example through what he called 'monster barring' (ad hoc alteration of definitions to rule out problematic counterexamples) and proof-generated concepts.…”
Section: Discussionmentioning
confidence: 99%
“…Lakatos's research was deeply involved with the development of definitions (e.g. Kontorovich & Zazkis, 2016;Larsen & Zandieh, 2008;Ouvrier-Buffet, 2006). He described the history of the concepts of polyhedron and of uniform convergence of sequences of functions in terms of the development of definitions, for example through what he called 'monster barring' (ad hoc alteration of definitions to rule out problematic counterexamples) and proof-generated concepts.…”
Section: Discussionmentioning
confidence: 99%
“…O grupo temático # 2 está composto pelos estudos de Kontorovich & Zazkis (2016), Prado & Lobo da Costa (2016) e Tekin-Sitrava & Isiksal-Bostan (2016). São três pesquisas empíricas em que se exploram os conhecimentos do professor de matemática em contextos de formação continuada de professores e ensino de matemática na escola.…”
Section: Metassíntese Do Eixo 2: "Teacher Knowledge" -Mathematicsunclassified
“…São três pesquisas empíricas em que se exploram os conhecimentos do professor de matemática em contextos de formação continuada de professores e ensino de matemática na escola. Kontorovich & Zazkis (2016), visando a explorar a maneira em que um grupo de 16 professores de matemática lidam com as tensões entre duas perspectivas do ângulo, objetivam caracterizar as aproximações do ângulo empregadas por esses professores como forma estática e rotação dinâmica. Para tal, os professores, em contexto de formação continuada, foram engajados a resolver uma tarefa que solicitava a criação de diálogos hipotéticos entre um docente e estudantes em que se abordasse a conjectura de que a soma dos ângulos exteriores de um polígono é igual a 360º.…”
Section: Metassíntese Do Eixo 2: "Teacher Knowledge" -Mathematicsunclassified
“…Harel (1998Harel ( , 2013 identified many intellectual needs in mathematics including (a) need for certainty, (b) need for causality, (c) need for computation, and (d) need for communication. Kontorovich and Zazkis (2016) introduced an additional need: the need for efficiency.…”
Section: Opportunities To Promote Intellectual Needmentioning
confidence: 99%
“…The evolution of number systems was also driven by the need for efficiency. The need for efficiency is associated with the parsimony principle of doing a minimal amount of work to solve a given problem (Kontorovich & Zazkis, 2016). Number systems not only provide a means for computation, but also each increase in sophistication over time (variations) increased the efficiency of computation.…”
Section: Opportunities To Promote Intellectual Needmentioning
confidence: 99%