This work focuses on optimizing process parameters in turning AISI 4340 alloy steel. A hybridization of Machine Learning (ML) algorithms and a Non-Dominated Sorting Genetic Algorithm (NSGA-II) is applied to find the Pareto solution. The objective functions are a simultaneous minimum of average surface roughness (Ra) and cutting force under the cutting parameter constraints of cutting speed, feed rate, depth of cut, and tool nose radius in a range of 50-375 m/min, 0.02-0.25 mm/rev, 0.1-1.5 mm, and 0.4-0.8 mm, respectively. The present study uses five ML modelsnamely SVR, CAT, RFR, GBR, and ANNto predict Ra and cutting force. Results indicate that ANN offers the best predictive performance in respect of all accuracy metrics: root-mean-squared-error (RMSE), mean-absolute-error (MAE), and coefficient of determination (R 2 ). In addition, a hybridization of NSGA-II and ANN is implemented to find the optimal solutions for machining parameters, which lie on the Pareto front. The results of this multi-objective optimization indicate that Ra lies in a range between 1.032 and 1.048 µm, and cutting force was found to range between 7.981 and 8.277 kgf for the five selected Pareto solutions. In the set of non-dominated keys, none of the individual solutions is superior to any of the others, so it is the manufacturer's decision which dataset to select. Results summarize the value range in the Pareto solutions generated by NSGA-II: cutting speeds between 72.92 and 75.11 m/min, a feed rate of 0.02 mm/rev, a depth of cut between 0.62 and 0.79 mm, and a tool nose radius of 0.4 mm, are recommended. Following that, experimental validations were finally conducted to verify the optimization procedure.