Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background The forms of automation available to the oncology pharmacy range from compounding robotic solutions through to combination workflow software, which can scale-up to cover the entire workflow from prescribing to administration. A solution that offers entire workflow management for oncology is desirable because (in terms of cytotoxic delivery of a regimen to a patient) the chain that starts with prescription and the assay of the patient’s laboratory results and ends with administration has multiple potential safety gaps and choke points. Objective The aim of this study was to show how incremental change to a core compounding workflow software solution has helped an organization meet goals of improved patient safety; increasing the number of oncology treatments; improving documentation; and improving communication between oncologists, pharmacists, and nurses. We also aimed to illustrate how using this technology flow beyond the pharmacy has extended medication safety to the patient’s bedside through the deployment of a connected solution for confirming and documenting right patient–right medication transactions. Methods A compounding workflow software solution was introduced for both preparation and documentation, with pharmacist verification of the order, gravimetric checks, and step-by-step on-screen instructions displayed in the work area for the technician. The software supported the technician during compounding by proposing the required drug vial size, diluents, and consumables. Out-of-tolerance concentrations were auto-alerted via an integrated gravimetric scale. A patient-medication label was created. Integration was undertaken between a prescribing module and the compounding module to reduce the risk of transcription errors. The deployment of wireless-connected handheld barcode scanners was then made to allow nurses to use the patient-medication label on each compounded product and to scan patient identification bands to ensure right patient–right prescription. Results Despite an increase in compounding, with a growth of 12% per annum and no increase in pharmacy headcount, we doubled our output to 14,000 medications per annum through the application of the compounding solution. The use of a handheld barcode scanning device for nurses reduced the time for medication administration from ≈6 minutes per item to 41 seconds, with a mean average saving of 5 minutes and 19 seconds per item. When calculated against our throughput of 14,000 items per annum (current production rate via pharmacy), this gives a saving of 3 hours and 24 minutes of nursing time per day, equivalent to 0.425 full-time nurses per annum. Conclusions The addition of prescribing, compounding, and administration software solutions to our oncology medication chain has increased detection and decreased the risk of error at each stage of the process. The double-checks that the system has built in by virtue of its own systems and through the flow of control of drugs and dosages from physician to pharmacist to nurse allow it to integrate fully with our human systems of risk management.
Background The forms of automation available to the oncology pharmacy range from compounding robotic solutions through to combination workflow software, which can scale-up to cover the entire workflow from prescribing to administration. A solution that offers entire workflow management for oncology is desirable because (in terms of cytotoxic delivery of a regimen to a patient) the chain that starts with prescription and the assay of the patient’s laboratory results and ends with administration has multiple potential safety gaps and choke points. Objective The aim of this study was to show how incremental change to a core compounding workflow software solution has helped an organization meet goals of improved patient safety; increasing the number of oncology treatments; improving documentation; and improving communication between oncologists, pharmacists, and nurses. We also aimed to illustrate how using this technology flow beyond the pharmacy has extended medication safety to the patient’s bedside through the deployment of a connected solution for confirming and documenting right patient–right medication transactions. Methods A compounding workflow software solution was introduced for both preparation and documentation, with pharmacist verification of the order, gravimetric checks, and step-by-step on-screen instructions displayed in the work area for the technician. The software supported the technician during compounding by proposing the required drug vial size, diluents, and consumables. Out-of-tolerance concentrations were auto-alerted via an integrated gravimetric scale. A patient-medication label was created. Integration was undertaken between a prescribing module and the compounding module to reduce the risk of transcription errors. The deployment of wireless-connected handheld barcode scanners was then made to allow nurses to use the patient-medication label on each compounded product and to scan patient identification bands to ensure right patient–right prescription. Results Despite an increase in compounding, with a growth of 12% per annum and no increase in pharmacy headcount, we doubled our output to 14,000 medications per annum through the application of the compounding solution. The use of a handheld barcode scanning device for nurses reduced the time for medication administration from ≈6 minutes per item to 41 seconds, with a mean average saving of 5 minutes and 19 seconds per item. When calculated against our throughput of 14,000 items per annum (current production rate via pharmacy), this gives a saving of 3 hours and 24 minutes of nursing time per day, equivalent to 0.425 full-time nurses per annum. Conclusions The addition of prescribing, compounding, and administration software solutions to our oncology medication chain has increased detection and decreased the risk of error at each stage of the process. The double-checks that the system has built in by virtue of its own systems and through the flow of control of drugs and dosages from physician to pharmacist to nurse allow it to integrate fully with our human systems of risk management.
BACKGROUND The forms of automation available to the oncology pharmacy range from compounding robotic solutions, through to combination workflow software which can scale up to cover the entire workflow from prescribing to administration. A solution that offers entire workflow management for oncology is desirable because in terms of cytotoxic delivery of a regimen to a patient the chain, which starts with prescription and the assay of the patient’s laboratory results and ends with administration, has multiple potential chokepoints. OBJECTIVE To show how incremental change to a core compounding workflow software solution has helped an organization meet goals of improved patient safety, increasing the number of oncology treatments, improving documentation and improving communication between oncologists, pharmacists and nurses. And to illustrate how using this technology flow beyond the pharmacy has extended medication safety to the patient’s bedside through the deployment of a connected solution for confirming, and documenting, right patient-right medication transactions. METHODS A compounding workflow software solution was introduced for both preparation and documentation, with pharmacist verification of the order, gravimetric checks, and step-by-step on-screen instructions displayed in the work area for the technician. The software supported the technician during compounding by proposing required drug vial size, diluents and consumables. Out of tolerance concentrations were auto-alerted via an integrated gravimetric scale. A patient-medication label was created. Integration was undertaken between a prescribing module and the compounding module to reduce the risk of transcription errors. The deployment of wireless connected handheld barcode scanners was then made to allow nurses to use the patient-medication label on each compounded product and to scan patient ID bands to ensure right patient-right prescription. RESULTS Despite an increase in compounding, with a growth of 12% per annum and no increase in pharmacy headcount we doubled our output to 14,000 medications per annum through application of the compounding solution. There was also an overall reduction in compounding time of 35%. We also saw improved management of remnants and reduced costs overall. The use of handheld barcode scanning for nurses reduced the time for medication administration from ≈ 6 minutes per item to 41 seconds, with a mean average saving of 5 minutes and 19 seconds (5.303 minutes) per item. When calculated against our throughput of 14,000 items per annum (current production rate via pharmacy) this gives a saving of 3 Hours and 24 minutes of nursing time per day, equivalent to 0.425 full-time nurses per annum. CONCLUSIONS The addition of prescribing, compounding and administration software solutions to our oncology mediation chain has increased detection and decreased the risk of error at each stage of the process. The double-checks that the system has built in by virtue of its own systems and through the flow of control of drugs and dosages from physician to pharmacist to nurse allows it to integrate fully with our human systems of risk management. CLINICALTRIAL Nil
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.