We present an evaluation of airborne Intensity-Modulated Continuous-Wave (IM-CW) lidar measurements of atmospheric column CO2 mole fractions during the ACT-America project. This lidar system transmits online and offline wavelengths simultaneously on the 1.57111-µm CO2 absorption line, with each modulated wavelength using orthogonal swept frequency waveforms. After the spectral characteristics of this system were calibrated through short-path measurements, we used the HITRAN spectroscopic database to calculate the average-column CO2 mole fraction (XCO2) from the lidar measured optical depths. Using in situ measurements of meteorological parameters and CO2 concentrations for calibration data, we demonstrate that our lidar CO2 measurements were consistent from season to season and had an absolute calibration error (standard deviation) of 0.80 ppm when compared to XCO2 values calculated from in situ measurements. By using a 10-second or longer moving average, a precision of 1 ppm or better was obtained. The estimated CO2 measurement precision for 0.1-s, 1-s, 10-s, and 60-s averages were determined to be 3.4 ppm 1.2 ppm, 0.43 ppm, and 0.26 ppm, respectively. These correspond to measurement signal-to-noise ratios of 120, 330, 950, and 1600, respectively. The drift in XCO2 over one-hour of flight time was found to be below 0.1 ppm. These analyses demonstrate that the measurement stability, precision and accuracy are all well below the thresholds needed to study synoptic-scale variations in atmospheric XCO2. This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as