Deformation and texture evolution of AZ31B magnesium (Mg) alloy sheet under uniaxial tension, compression, and reverse loading after different pre-strain (compression and tension) were investigated experimentally. The results indicate that the pre-compressive strain remarkably affects the reverse tensile yield stress and the width of the detwinning-dominant stage during inverse tension process. Similar to stress-strain curve of the uniaxial compression, the curve of reverse tensile yield value also has 'S' shape, and its minimum value is only 38 MPa. The relationship between pre-compressive strain and the width of detwinning-dominant stage presents a linear growth, and the greater the precompressive strain is, the smaller the strain hardening rate of the detwinning-slip-dominant stage is. Compared with the reverse tension under pre-compression, the influence of the pre-tension deformation on the deformation mechanism of subsequent compression is relatively simple. With the increase in pre-tension strain, the yield stress of the reverse loading is rising.