“…P 1 (Ã)ϕ n−1 k (z) = (−2) −p−q P 1 (z)ϕ n+p+q−1 k−q (z), moreover P 1 (Ã) is right invariant, therefore it follows that P 1 (Ã)(ãP s,t × ϕ n−1 k )(z) = 0, ∀ k ≥ q and |z| = R.Using Hecke-Bochner identity (Lemma 2.2), we getã, ϕ n+s+t−1 k−s P 1 (Ã)P s,t ϕ n+s+t−1 k−s (z) = 0, ∀ k ≥ max(q, s) and |z| = R. Ifà * (P s,t ϕ n+s+t−1 k−s )(R) = 0 for some k ≥ max(q, s), then a computation similar as done for Z * j f in[13], p.2516-17, we havẽ |z| = R and γ = n + s + t. Since {P s,t | S 2n−1 : s, t ≥ 0} form an orthonormal basis for L 2 (S 2n−1 ). An inductive process, then gives the coefficient of highest degree polynomial P p+s,q+t as1 1 k−s (R) = 0.…”