A lattice Boltzmann model with complex distribution function for the complex Ginzburg-Landau equation (CGLE) is proposed. By using multiscale technique and the Chapman-Enskog expansion on complex variables, we obtain a series of complex partial differential equations. Then, complex equilibrium distribution function and its complex moments are obtained. Based on this model, the rotation and oscillation properties of stable spiral waves and the breaking-up behavior of unstable spiral waves in CGLE are investigated in detail.