The 300-kDa cation-independent mannose 6-phosphate receptor (CI-MPR) and the 46-kDa cation-dependent MPR (CD-MPR) are type I integral membrane glycoproteins that play a critical role in the intracellular delivery of newly synthesized mannose 6-phosphate (Man-6-P)-containing acid hydrolases to the lysosome. The extracytoplasmic region of the CI-MPR contains 15 contiguous domains, and the two high affinity (ϳ1 nM) Man-6-P-binding sites have been mapped to domains 1-3 and 9, with essential residues localized to domains 3 and 9. Domain 5 of the CI-MPR exhibits significant sequence homology to domains 3 and 9 as well as to the CD-MPR. A structure-based sequence alignment was performed that predicts that domain 5 contains the four conserved key residues (Gln, Arg, Glu, and Tyr) identified as essential for carbohydrate recognition by the CD-MPR and domains 3 and 9 of the CI-MPR, but lacks two cysteine residues predicted to form a disulfide bond within the binding pocket. To determine whether domain 5 harbors a carbohydrate-binding site, a construct that encodes domain 5 alone (Dom5His) was expressed in Pichia pastoris. Microarray analysis using 30 different oligosaccharides demonstrated that Dom5His bound specifically to a Man-6-P-containing oligosaccharide (pentamannosyl 6-phosphate). Frontal affinity chromatography showed that the affinity of Dom5His for Man-6-P was ϳ300-fold lower (K i ؍ 5.3 mM) than that observed for domains 1-3 and 9. The interaction affinity for the lysosomal enzyme -glucuronidase was also much lower (K d ؍ 54 M) as determined by surface plasmon resonance analysis. Taken together, these results demonstrate that the CI-MPR contains a third Man-6-P recognition site that is located in domain 5 and that exhibits lower affinity than the carbohydrate-binding sites present in domains 1-3 and 9.