<span lang="EN-US">Arabic’s complex morphology, orthography, and dialects make sentiment analysis difficult. This activity makes it harder to extract text attributes from short conversations to evaluate tone. Analyzing and judging a person’s emotional state is complex. Due to these issues, interpreting sentiments accurately and identifying polarity may take much work. Sentiment analysis extracts subjective information from text. This research evaluates machine learning (ML) techniques for understanding Arabic emotions. Sentiment analysis (SA) uses a support vector machine (SVM), Adaboost classifier (AC), maximum entropy (ME), k-nearest neighbors (KNN), decision tree (DT), random forest (RF), logistic regression (LR), and naive Bayes (NB). A model for the ensemble-based sentiment was developed. Ensemble classifiers (ECs) with 10-fold cross-validation out-performed other machine learning classifiers in accuracy (A), specificity (S), precision (P), F1 score (FS), and sensitivity (S).</span><p> </p>