Parahydrogen (p‐H2) induced polarization (PHIP) NMR spectroscopy showed that [CpXRu] complexes with greatly different electronic properties invariably engage propargyl alcohol derivatives into gem‐hydrogenation with formation of pianostool ruthenium carbenes; in so doing, less electron rich CpX rings lower the barriers, stabilize the resulting complexes and hence provide opportunities for harnessing genuine carbene reactivity. The chemical character of the resulting ruthenium complexes was studied by DFT‐assisted analysis of the chemical shift tensors determined by solid‐state 13C NMR spectroscopy. The combined experimental and computational data draw the portrait of a family of ruthenium carbenes that amalgamate purely electrophilic behavior with characteristics more befitting metathesis‐active Grubbs‐type catalysts.