Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Within the framework of SU(3) flavor symmetry, we investigate two-body doubly charmful baryonic $$ B\to {\textbf{B}}_c{\overline{\textbf{B}}}_c^{\prime } $$ B → B c B ¯ c ′ decays, where $$ {\textbf{B}}_c{\overline{\textbf{B}}}_c^{\prime } $$ B c B ¯ c ′ represents the anti-triplet charmed dibaryon. We determine the SU(3)f amplitudes and calculate $$ \mathcal{B}\left({B}^{-}\to {\Xi}_c^0{\overline{\Xi}}_c^{-}\right)=\left({3.4}_{-0.9}^{+1.0}\right)\times {10}^{-5} $$ B B − → Ξ c 0 Ξ ¯ c − = 3.4 − 0.9 + 1.0 × 10 − 5 and $$ \mathcal{B}\left({\overline{B}}_s^0\to {\Lambda}_c^{+}{\overline{\Xi}}_c^{-}\right)=\left({3.9}_{-1.0}^{+1.2}\right)\times {10}^{-5} $$ B B ¯ s 0 → Λ c + Ξ ¯ c − = 3.9 − 1.0 + 1.2 × 10 − 5 induced by the single W-emission configuration. We find that the W-exchange amplitude, previously neglected in studies, needs to be taken into account. It can cause a destructive interfering effect with the W-emission amplitude, alleviating the significant discrepancy between the theoretical estimation and experimental data for $$ \mathcal{B}\left({\overline{B}}^0\to {\Lambda}_c^{+}{\overline{\Lambda}}_c^{-}\right) $$ B B ¯ 0 → Λ c + Λ ¯ c − . To test other interfering decay channels, we calculate $$ \mathcal{B}\left({\overline{B}}_s^0\to {\Xi}_c^{0\left(+\right)}{\overline{\Xi}}_c^{0\left(+\right)}\right)=\left({3.0}_{-1.1}^{+1.4}\right)\times {10}^{-4} $$ B B ¯ s 0 → Ξ c 0 + Ξ ¯ c 0 + = 3.0 − 1.1 + 1.4 × 10 − 4 and $$ \mathcal{B}\left({\overline{B}}^0\to {\Xi}_c^0{\overline{\Xi}}_c^0\right)=\left({1.5}_{-0.6}^{+0.7}\right)\times {10}^{-5} $$ B B ¯ 0 → Ξ c 0 Ξ ¯ c 0 = 1.5 − 0.6 + 0.7 × 10 − 5 . We estimate non-zero branching fractions for the pure W-exchange decay channels, specifically $$ \mathcal{B}\left({\overline{B}}_s^0\to {\Lambda}_c^{+}{\overline{\Lambda}}_c^{-}\right)=\left({8.1}_{-1.5}^{+1.7}\right)\times {10}^{-5} $$ B B ¯ s 0 → Λ c + Λ ¯ c − = 8.1 − 1.5 + 1.7 × 10 − 5 and $$ \mathcal{B}\left({\overline{B}}^0\to {\Xi}_c^{+}{\overline{\Xi}}_c^{-}\right)=\left(3.0\pm 0.6\right)\times {10}^{-6} $$ B B ¯ 0 → Ξ c + Ξ ¯ c − = 3.0 ± 0.6 × 10 − 6 . Additionally, we predict $$ \mathcal{B}\left({B}_c^{+}\to {\Xi}_c^{+}{\overline{\Xi}}_c^0\right)=\left({2.8}_{-0.7}^{+0.9}\right)\times {10}^{-4} $$ B B c + → Ξ c + Ξ ¯ c 0 = 2.8 − 0.7 + 0.9 × 10 − 4 and $$ \mathcal{B}\left({B}_c^{+}\to {\Lambda}_c^{+}{\overline{\Xi}}_c^0\right)=\left({1.6}_{-0.4}^{+0.5}\right)\times {10}^{-5} $$ B B c + → Λ c + Ξ ¯ c 0 = 1.6 − 0.4 + 0.5 × 10 − 5 , which are accessible to experimental facilities such as LHCb.
Within the framework of SU(3) flavor symmetry, we investigate two-body doubly charmful baryonic $$ B\to {\textbf{B}}_c{\overline{\textbf{B}}}_c^{\prime } $$ B → B c B ¯ c ′ decays, where $$ {\textbf{B}}_c{\overline{\textbf{B}}}_c^{\prime } $$ B c B ¯ c ′ represents the anti-triplet charmed dibaryon. We determine the SU(3)f amplitudes and calculate $$ \mathcal{B}\left({B}^{-}\to {\Xi}_c^0{\overline{\Xi}}_c^{-}\right)=\left({3.4}_{-0.9}^{+1.0}\right)\times {10}^{-5} $$ B B − → Ξ c 0 Ξ ¯ c − = 3.4 − 0.9 + 1.0 × 10 − 5 and $$ \mathcal{B}\left({\overline{B}}_s^0\to {\Lambda}_c^{+}{\overline{\Xi}}_c^{-}\right)=\left({3.9}_{-1.0}^{+1.2}\right)\times {10}^{-5} $$ B B ¯ s 0 → Λ c + Ξ ¯ c − = 3.9 − 1.0 + 1.2 × 10 − 5 induced by the single W-emission configuration. We find that the W-exchange amplitude, previously neglected in studies, needs to be taken into account. It can cause a destructive interfering effect with the W-emission amplitude, alleviating the significant discrepancy between the theoretical estimation and experimental data for $$ \mathcal{B}\left({\overline{B}}^0\to {\Lambda}_c^{+}{\overline{\Lambda}}_c^{-}\right) $$ B B ¯ 0 → Λ c + Λ ¯ c − . To test other interfering decay channels, we calculate $$ \mathcal{B}\left({\overline{B}}_s^0\to {\Xi}_c^{0\left(+\right)}{\overline{\Xi}}_c^{0\left(+\right)}\right)=\left({3.0}_{-1.1}^{+1.4}\right)\times {10}^{-4} $$ B B ¯ s 0 → Ξ c 0 + Ξ ¯ c 0 + = 3.0 − 1.1 + 1.4 × 10 − 4 and $$ \mathcal{B}\left({\overline{B}}^0\to {\Xi}_c^0{\overline{\Xi}}_c^0\right)=\left({1.5}_{-0.6}^{+0.7}\right)\times {10}^{-5} $$ B B ¯ 0 → Ξ c 0 Ξ ¯ c 0 = 1.5 − 0.6 + 0.7 × 10 − 5 . We estimate non-zero branching fractions for the pure W-exchange decay channels, specifically $$ \mathcal{B}\left({\overline{B}}_s^0\to {\Lambda}_c^{+}{\overline{\Lambda}}_c^{-}\right)=\left({8.1}_{-1.5}^{+1.7}\right)\times {10}^{-5} $$ B B ¯ s 0 → Λ c + Λ ¯ c − = 8.1 − 1.5 + 1.7 × 10 − 5 and $$ \mathcal{B}\left({\overline{B}}^0\to {\Xi}_c^{+}{\overline{\Xi}}_c^{-}\right)=\left(3.0\pm 0.6\right)\times {10}^{-6} $$ B B ¯ 0 → Ξ c + Ξ ¯ c − = 3.0 ± 0.6 × 10 − 6 . Additionally, we predict $$ \mathcal{B}\left({B}_c^{+}\to {\Xi}_c^{+}{\overline{\Xi}}_c^0\right)=\left({2.8}_{-0.7}^{+0.9}\right)\times {10}^{-4} $$ B B c + → Ξ c + Ξ ¯ c 0 = 2.8 − 0.7 + 0.9 × 10 − 4 and $$ \mathcal{B}\left({B}_c^{+}\to {\Lambda}_c^{+}{\overline{\Xi}}_c^0\right)=\left({1.6}_{-0.4}^{+0.5}\right)\times {10}^{-5} $$ B B c + → Λ c + Ξ ¯ c 0 = 1.6 − 0.4 + 0.5 × 10 − 5 , which are accessible to experimental facilities such as LHCb.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.