River corridors supply a substantial proportion of the fresh water for societal and ecological needs. Individual functions of flowing (lotic) streams and rivers and ponded (lentic) waterbodies such as lakes and reservoirs are well-studied, but their collective functions are not as well understood. Here we bring together nationally consistent river corridor datasets to characterize the contributions of lotic and lentic features and to estimate changes over the past centuries. High-resolution datasets describing waterbodies across 10 million kilometers of the conterminous U.S. (CONUS) river network were classified by waterbody type and origin (historic vs. human-made or intensively managed), surface areal coverage, and degree of connectivity as estimated by a change in water residence timescale in river corridors. Four centuries of human disturbance drove large swings in river corridor makeup, with a transition toward more lotic systems caused by beaver extirpation and abandonment of waterwheel mill ponds by end of the nineteenth century. The twentieth century saw a vast expansion (49%) in river corridor areal coverage resulting from construction and management of small ponds and reservoirs for drinking water, hydropower, irrigation and livestock watering, and stormwater control. Water residence timescale in river corridors doubled or quadrupled over large areas, and more in specific locations, during the twentieth century as a result of the increased coverage of reservoirs and managed small ponds. Although reservoirs and lakes now dominate river corridor surface areas, we found that the growing number of small ponds impacts a greater proportion of network length through their influence on headwater streams where most water and chemical runoff enters the river corridor. We close with an agenda for integrated modeling of the physical, biogeochemical, and ecological drivers of river corridor functions, trajectories of change, and management opportunities.