The use of moiré pattern of superimposition of linear forked gratings (LFGs) and Fresnel zone plates (ZPs) has already been reported for study of different physical effects. In spite of a considerable number of applications, there is no comprehensive formulation for this kind of moiré pattern. In this work, we introduce a new family of ZPs containing topological defects that we named defected ZP (DZP) and we present a very simple, uniform, and comprehensive formulation for the moiré pattern of superimposition of two LFGs, two DZPs, and superimposition of an LFG on a DZP, using the reciprocal vector approach. For the case of the two LFGs superimposition, we show that the resulting moiré pattern has a starlike shape or is a large-scale LFG pattern. In the case in which two DZPs are superimposed, we show that the resulting moiré pattern has three general forms: large-scale DZP pattern, starlike pattern, and large-scale LFG pattern. In the superimposition of an LFG on a DZP, in special conditions a new spiral ZP having a topological defect is produced in which its defect number related to the superimposed gratings structures. The presented formulation has potential applications in singular optics measurements.