Broadly neutralizing antibodies have been isolated that bind the glycan shield of the HIV-1 envelope spike. One such antibody, PGT135, contacts the intrinsic mannose patch of gp120 at the Asn332, Asn392, and Asn386 glycosylation sites. Here, site-specific glycosylation analysis of recombinant gp120 revealed glycan microheterogeneity sufficient to explain the existence of a minor population of virions resistant to PGT135 neutralization. Target microheterogeneity and antibody glycan specificity are therefore important parameters in HIV-1 vaccine design.
The isolation of potent, broadly neutralizing antibodies (bnAbs) from infected HIV-1 individuals has focused efforts toward the molecular characterization of their epitopes (1-5). These antibodies have potential value in a therapeutic context, and their epitopes represent key vaccine leads (6-12). Structural and biochemical studies have revealed that a number of the recently isolated bnAbs penetrate the heavily glycosylated surface of the HIV-1 envelope spike, making contacts with both the glycans and the protein underneath (1-3, 13-22) Characterization of the glycan-containing epitopes has revealed that much of the glycan shield is vulnerable to antibody recognition (5). Many glycans within the outer domain of gp120 are protected from normal glycan processing and do not form complex-type glycans, instead remaining as immature oligomannose-type glycans. This region is known as the "intrinsic mannose patch" since it contains oligomannose-type glycans, regardless of whether presented in the context of isolated gp120 monomers or functional virions (23-25).The intrinsic mannose patch is targeted by the so-called "mannose patch-dependent" antibodies, which include PGT121 to -124, 10-1074, PGT125 to -128, PGT130 and -131, PGT135 to -137, and 2G12 (14-16, 26-29). These antibodies display remarkable potencies against a diverse panel of HIV-1 strains, although their breadth varies both between and within families (2, 30). PGT135 was found to neutralize 33% of viruses from a 162-crossclade-pseudovirus panel. This neutralization is equivalent to the breadth of b12, which has a protein-based epitope at the CD4 binding site, but is lower than those of other Asn332-dependent bnAbs, such as PGT128 and PGT121, which neutralized 72% and 70% of the panel, respectively (2). This lower breadth of neutralization has been attributed to the limited prevalence of the larger number of critical contact residues (Asn332, Asn392, and His330) across different isolates (15) compared to PGT121 and PGT128. In addition to these properties, inspection of neutralization profiles reveals that, despite containing the required target residues, for some strains of HIV-1, neutralization is incomplete, with plateaus that do not reach 100% (15). A crystal structure of a PGT135 Fab domain in complex with the gp120 core revealed that the majority of the interactions were mediated through contact with the glycans at the Asn332, Asn392, and Asn386 sites, with 1,010 Å 2 and 438 Å 2 of buried surface area conta...