Multicompartment micelles are a new class of nanomaterials that may find wide applications in the fields of drug delivery, nanotechnology and catalysis. Due to their structural complexity, as well as the wide parameter space to explore, experimental investigations are a difficult task, to which molecular simulation may contribute greatly. In this paper, the application of the dissipative particle dynamics simulation technique to the understanding of multicompartment micelles is introduced, illustrating that DPD is a powerful tool for identifying new morphologies by varying block length, block ratio and solvent quality in a systematic way. The formation process of multicompartment micelles, as well as shear effects and the self‐assembly of nanoparticle mixtures in multicompartment micelles, can also be studied well by DPD simulation. The present work shows that DPD, as well as other simulation techniques and theories, can complement experiments greatly, not only in exploring properties in a wider parameter space, but also by giving a preview of phenomena prior to experiments. DPD, as a mesoscopic dynamic simulation technique, is particularly useful for understanding the dynamic processes of multicompartment micelles at a microscopic level.magnified image