Previous measurements of a quadrupole component of azimuth correlations denoted by symbol v2 have been interpreted to represent elliptic flow, a hydrodynamic phenomenon conjectured to play a major role in noncentral nucleus-nucleus collisions. v2 measurements provide the main support for conclusions that a "perfect liquid" is formed in heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC). However, conventional v2 methods based on one-dimensional (1D) azimuth correlations give inconsistent results and may include a jet contribution. In some cases the data trends appear to be inconsistent with hydrodynamic interpretations. In this study we distinguish several components of 2D angular correlations and isolate a nonjet (NJ) azimuth quadrupole denoted by v2{2D}. We establish systematic variations of the NJ quadrupole on yt, centrality and collision energy. We adopt transverse rapidity yt as both a velocity measure and as a logarithmic alternative to transverse momentum pt. Based on NJ quadrupole trends we derive a completely factorized universal parametrization of quantity v2{2D}(yt, b, √ sNN ) which describes the centrality, yt and energy dependence. From yt-differential v2(yt) data we isolate a quadrupole spectrum and infer a quadrupole source boost having unexpected properties. NJ quadrupole v2 trends obtained with 2D model fits are remarkably simple. The centrality trend appear to be uncorrelated with a sharp transition in jet-related structure that may indicate rapid change of Au-Au medium properties. The lack of correspondence suggests that the NJ quadrupole may be insensitive to such a medium. Several quadrupole trends have interesting implications for hydro interpretations.